AN ALGORITHM FOR THE
PROJECTIVE CHARACTERS OF
FINITE CHEVALLEY GROUPS

Randall R. Holmes*

An algorithm is obtained for the Brauer characters afforded
by the projective indecomposable modules (in the defining
characteristic) for the finite universal Chevalley groups.

Tables of character degrees for the special linear group

SL(4,2™), m=1,2,3, are provided.

In [4] we expressed in the language of directed graphs an
iterative procedure for finding the irreducible constituents (with
multiplicity) of a product of irreducible Brauer characters (in the
defining characteristic) of a finite universal Chevalley group.
Roughly speaking, the first iteration produces edges which
originate at the given product (viewed as a vertex). Each of these
edges terminates at either an irreducible Brauer character or a
product of such; in the latter case, a second iteration is
required. In this manner, paths (sequences of edges) are
constructed which eventually terminate at the desired irreducible

constituents, the multiplicities of which are then determined by

the paths.

*Research supported in part by the National Science Foundation.



The method described uses Steinberg’s tensor product theorem
and depends on a knowledge of the composition factors (with
multiplicity) of products of irreducible modules, with restricted
highest weights, for the including infinite algebraic group.
Indeed, the method is just a formalization of how one possessing
this knowledge would naturally proceed by hand. (Although the
required composition factors are not known, in general, they would
be known, in principle at least, should Lusztig’s conjecture be
proved.)

We will show in this paper that if we apply our iterative
procedure to a product of just two irreducible Brauer characters,
then any paths which terminate at the Steinberg character will have
at most two nontrivial edges (provided the characteristic is large
enough). Because of this, it is easy to determine all such paths
and hence the multiplicity of the Steinberg character as a
constituent of the product (given the information mentioned earlier
regarding the modules for the algebraic group). Since this
multiplicity is the main ingredient of the recursion formula
obtained in [4] for the characters of the projective indecomposable
modules, we easily obtain, in turn, a more explicit formula for
these important characters (see 2.7 as well as 2.9 and 2.10).

If the characteristic is too small, then our proofs are no
longer valid. If this is the case, however, it is possible to use
an explicit knowledge of the modules for the algebraic group to
amend our techniques in order to obtain similar results. In

section 3 we demonstrate this for the group SL(4,2m). In



particular, we compute the degrees of the projective indecomposable
characters of this group in the cases m = 1,2,3. (The

results of section 3 appear in the author’s University of Illinois
(Urbana) thesis. The author gratefully acknowledges the guidance

and kind encouragement of his advisor, Professor Michio Suzuki.)

1. Preliminaries

Let p be a prime number and let m € Z+\{O} U {0}. In what
follows, m will be assumed to be fixed except that definitions
and notations involving m will be considered established for all
m e Z+\{O} U {w}. If m<®, set q-= pm and let Eq denote a
field of order ¢q; if m=®, set g =® and let Ew = K

denote an algebraic closure of Ep.

Fix an irreducible root system R of rank £ and let G =

G(m) denote the universal Chevalley group of type R defined

(m)

is a finite group which we view as a

(o)

subgroup of the infinite algebraic group G .

over Eq. For m<, G

Choose a system {ai, 1 <1< £} of simple roots in R and

IN

let {A., 1

; i < £} be the corresponding fundamental dominant

weights. The Ai’s form a Z-basis for the weight lattice A
associated with R. For n € Z' we define

+
An = {Y aiAi € Al0 < a; < n} and we denote by Aoo = A the set



Y Z+Ai of dominant weights.

By "G-module" we shall mean finite dimensional KG-module if
m < ® and finite dimensional rational G-module if m = ®. For
X e A", M(\) denotes a fixed irreducible G(w)—module with

highest weight A.

(m)

Let G =20 denote the Grothendieck ring of the category

of G-modules and let denote the element of (& associated

M

with the module M. If m< ® we view Py 2s the Brauer
character afforded by M and thus identify @ with the ring of

Brauer characters of G. The elements P3i= Py AeAl are

H

q
called irreducible; they form a Z-basis for @, so that for each

](m)

© € @, there are uniquely determined integers [p:pA such

that ¢ = Y [@:pk](m)wk' If p= " for some G-module M,
AeAq

then [p:wA](m) is just the multiplicity of M(A) as a

composition factor of M.

(o)

Given any G '-module M, we denote by Fr(M) the

(o)

G " -module which has the same underlying vector space as M

but on which g € G acts according to the new rule g-x = Fr(g)x

(c0)

(x € M) where Fr 1is the Frobenius automorphism of G which

raises matrix entries to the pth power. The assignment Py

(o)

Prr (M) induces an endomorphism of the ring @ which we
also denote by Fr.
- m-1
Let A" = o Yj (weak direct sum if m = ®), where Yj is
j=0

a copy of A. We view Yj as a subgroup of A" and denote by



Lj : A Yj c A" and Wj A" s Yj c A™ the natural injection

and projection, respectively. We view A" as a subset of Aoo in
the natural way.

Let J = {(i,j)]1<i<¥£, 0<j<m} and for (i,j) €,
set Aij = Lj(Ai). Then {Aij|(i,j) € J} is a Z-basis for A"

Set aij = Lj(ai) and Kys = pAij - A (viewing second

J
subscripts in Z/mZ if m < ® so that Ai

i,j+1
j41 is always

?

defined). We obtain a partial order < on A" by declaring

X' <x if X -x' €P :=V + #, where VU =Y Z+aij and

+
¥=)1Z Ky

The assignment Aij = pJAi defines a homomorphism wt: A" > A

m-1
which induces a bijection of the set A":= ¥ ¢.(A) onto A .
P72, Tip q
- C— L m
We define M(x):= M(wt(x)) and Pei= Put(x) (x € Ap).

Denote by X% = %(m) the free abelian monoid on the set
m-1

B= |J¢.(A)\{0}. We view each 1i.(A ) as a subset of X
=0 ] p ] p

(identifying 0 € Lj(Ap) with 1 € £) and in turn.identify AE
with its image in % under the map Y Lj(uj) — ] Lj(uj)

(uj € Ap). For x = Xy .. .X € ¥ (xi € B) we set o, = I @Xi.

The directed graph T which was described in the intreduction
is defined as follows (cf. [4]). Its set of vertices is X and

its set of edges is {(gO,...,gm_1)|§j € Aj} where Aj =

{(a,b) € Wj(%) x Ag | [pa:pb # 0}. (Here Tj : £ > ¥ fixes



Lj(A) and sends Lk(A) to 1 for k#j.) If e = (§j)
((aj,bj)) is an edge, it originates at o(e):=]] a and

(00)

terminates at t(e):= || res(bj) where res : X% > %X is defined

by Lj(A) — LE{A) (j = j 1is reduction modulo m if m < ® and
the identity map if m = ).
Let x, x! € ¥. A path ¢ of length s from x to x’ with

vertices Xs is a sequence '€ of edges such that: o(el) =

€1

X = X, t(es) = x' = X and t(ei) = o(ei ) = X5 (1 <i<s).

+1
Cs(x,x’) denotes the set of all paths from x to x’ of length

s. The essential length of the path ¢ (written e.l.(c¢)) is the

number of edges for which o(ei) # t(ei); we set e.l.(x,x') =

lub {e.1.(c)|c € | C (x,x")}.
8
For ¢ = (a,b) € A. (0 < j, <m) we define
Jo 0

_jo -
Lj (p “(wt{a) - wt(b))) € VU,

v(¢) =
0
V4 © (V) keio1
h(¢) = (Y (Y  bop 99k .) e¥

i=1 j=j, k=j+l 1k 1

where b =Y b..A,., and
ij74]

mult(¢) = [pazwb](w),

where the bar indicates the map which takes x = X ...X € X

(xi €B) to x =) X, € A", We extend these definitions first to
an edge e = (gj) in T by setting v(e) = Y V(gj), h(e) =

Y h(gj) and mult(e) =[] mult(gj) and then to a path ¢ =
SERRRTLN in T by setting v(e¢) =Y v(ei), h(e) = Y, h(ei) and
mult(e) =[] mult(e,).



THEOREM 1.1 ([4], 2.6.1). If x € ¥ and x' € AE, then
e.l.(x,x') <o and for each positive integer s > e.l.(x,x') we

have

[@X:wx,](m) = Y mult(c).
ceCS(X,x’)

THEOREM 1.2 ([41, 2.5.4, 2.6.2). If ¢ is a path in T from X
ro x' (x,x' € %), then x - x' =h(c) + v(e). In particular, if

x € ¥, x' € A" and Lo :p ,](m) £ 0, then x' < Xx.
p x'7x

For the remainder of the paper, we assume m < ®. If x €
Ag, we denote by @X the Brauer character afforded by the
projective indecomposable G-module P(x) that has unique

irreducible quotient M(x). If we set ~ =) (p—l)Aij, then

I' .= @7 = @7 is the Steinberg character.

THEOREM 1.3 ([41, 3.1.2). If x € Ag, then

moyxXy

& =Tp. - Y o o :T1™ o
x<yeAp M

yZX

(Here E- denotes the complex conjugate of .)

2. The Algorithm

In this section, we assume that p > <p,a6> +1 (= hR’ the

Coxeter number of R) where < , > 1is the inner product in the



definition of R, p =) Ai and ay = 2ao/<a0,a0> is the co-root

of the short dominant root «..

0
LEMMA 2.1. If Y tiinj =) 2% * ) bij“ij eP (tij €Z and
+ 4 3 -
aij’bij €Z), then < % biin’ a0> < D/(p-1) for each j, where

D = max{ ) tikAi’a6>'
k

Proof. Since mij = pA we have

ij Ai,j+l’
% (tij + bi,j—l - pbij)/\i = % 235% for each j (second
subscripts in Z/mZ). 1If

av

is chosen with < Z bij Ai’ 5

j
0 i 0

maximal, then for each j we have

D - (p-1)< Z biin, a6>
1

>CYt. A, a0 - Ypb,. A, &> +<{YDb., . _A,
7 1)1 0 § 1jg 1 0 { 1,30—1 i 0
> 0
where we have used the fact that <ai,a6> >0 for each 1. O

The following notation will be used throughout the rest of

the paper.

NOTATION 2.2. Fix two elements y = ]| Lj(uj) and z =[] Lj(uj)

(uj, Vj € Ap) of Ag C X and assume c¢ = e .,e_is a path in

T from yz to ~ with vertices yz = x,.,x X = . Each

edge e is an m-tuple (ngk) (0 < k < m) where ng =



(MaX nb ) € A . Write npk y MK M. . and set
i,j Y
n, k n k n, k
b, =7.(b S AL
j V=3 by

LEMMA 2.3. “b? =0 if j ¢ {kkeld or if n>1 and j #Kk.
Proof. From the definitions it is clear that nb? =0 if

j < k. Now, if we write y +z - v =) tiinj (tij-e Z), then

tij < p-1 for each (i,j) € J. Also, if j > k+1, then
y nbk.pj—k_ln. is a summand of h(c¢) which is a summand of
ij ik

y + z -7 (1.2). Thus,

ikl > __1_ .
<§1 leA1 ap < =3 §p1>Ai,aO> (by 2.1)

= <p.ag> < p-1

if j > k+1. Therefore, since <Ai,a6> > 0 for each i, we have

3

that nb? =0 if ¢ {kk¢l).

Now, write x; - 7 = ) Siinj (sij € Z). By the first

paragraph, we have x, = ]| res[(lbt)(1b§+1)] so that for each j,

1x
o~ j J -1 _ v
< % s1J > < E b1J ; + Y b A. - (p-1)p, a0>
1, -1 v
<< Z bl_] Aj: a0> < p-1

i
(interpreting the superscript j-1 as m-1 if j = 0).
Furthermore, if n>1 and j > k+#1, then Y npk ikl
i

ij P ik 18
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a summand of Qi -~ (1.2), whence pJ_k_1< ) nb?jki, a6> <1
i

(2.1). Therefore, nb? =0 if n>1 and j # k. 0

COROLLARY 2.4. e.l.(yz,y) < 2.

Proof. If ¢ has length at least 2, then 2.3 implies that

X, € Ag C %X. Now it is clear that the only edge in T

originating at an element of AE is the one which terminates at

the same element. Hence = 74 and the statement follows. 0

%o
Define 3, = {} hijmij € | % hiin € € for each j} where
€= {n e [<nap <pop).

_ _ L] .
COROLLARY 2.5. If h(c) =) hijnij, then hij = bi,j+1 for

each (i,j) € d. In particular, h(c) € %O'
Proof. This is clear from 2.3 and its proof. 0

For u,v,n',n € Ap we define

mult(p,v,n',n) = ) [wuwyzwﬂFr(wn)](m)[wﬂwn,:w( (@),

p-1)p
ﬂeAp

LEMMA 2.6. If h =Y hyjmyy € %y, then



—11-

m-1
y mult(e) = [[ maltCu,vp,my _5.m)
ceCz(yz,v) k=0

h(c)=h

wh . =Y h..A..
ere nJ % 157

Proof. Assume that ¢ has length 2 and that h(c) = h.

Then

m-1

mult(c) = [ [p 1 ()
k=0

(0)
: ] %) © P
T (y)pw (z)"?1.%x 1.k 1.k 71, k-1""m, (v)
k k bk bk+1 bk bk k

by 2.3. Set ﬂk = Z 1b§kki € Ap. By 2.5 and the fact that
i

,](m)

fo:p = [Fr(w):Fr(@‘)](m) (p,p" € Q(m), o' irreducible) we get

m-1

mult(e) = [[ [ o :p © P
k=0 Mk Yk Pk Tk B Mgy (1o

Conversely, if this product is nonzero for some m-tuple (ﬂk)

. 1Lk 2.k
(ﬂk € Ap), then the assignments “b = Lk(ﬂk)ak+l(ﬁk) and “b" =

Lk(7), determine a path ¢ € C2(yz,7) with h(c) = h (see 2.5).

Therefore,

mult(c) =
cECz(yz,q)

h(e)=h

m-1

(00)
) o o 0, Fr(p )] lo, ©
(B) k=0 Mk P My Px

ﬂkeAp

o
My  (P-1)p
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and switching the sum and product on the right gives the desired

formula. O
For u € Ap, define
T(w) = {(n',p,7)|n',n €€, 7€, utr € Ap and 7+n'-pn € ) Z+ai}

d f =Y 0. (u) e A", let
and for x =) LJ(MJ) pr 1€

m-1
UG = {((nf,my,73)) € X

T(p. =, 0<j<m1
ot pdlmt=m 1, 02§ <m-1)

(interpreting n_, as 7 ). Now, for each u = ((nﬁ,nj,rj)) €

m—-1""

U(x), set Ta = ) Lj(Tj) and h = y hijﬂij’ where ny = % hiin’

and define

m-1

m(w) = ]| mult((p=1)p=phy , ty +7) 0L, M ) -
k=0

THEOREM 2.7. If x € AE, then

@ =Tp - Y 7o :
X ¥—X UEU( - ) X+Tu
Tu¢0

Proof. From 1.3, 1.1, 2.4 and 2.5 we see that



-13-

X v-x +T

o =Tp =YY ¥ mult(e)® (2.8)
hrt ¢ x
)

h(c)=

where the first sum is over all h € %O’ the second sum is over

all 7 € P\{0} such that x+7 € AE and the third sum is over all
c € CZ(T):z Cz((q—x)(x+r),7) such that h(c) =
Let h and 7 be fixed indices for the first two

summations, respectively, in 2.8 having the property that h = h(c)

for some ¢ € C (7). As before, write h = Y h, (h.,., € ")
ij 1J 1]

and set n; = % hiin' Similarly, write 7 = ) tlelj (tij € Z)

and set Tj =) tiin' Fix ¢ € C2(T) with h(c¢) = h and write
i

v(ie) =Y a. (a.. € Z'). 1.2 implies that 7 = h(c) + v(c).

1] 1J 1]
Therefore,

Lj(Tj tM5g - pnj) = Lj[g (tij + hi,j—l - ph..)Ai]

”j(izktik’\ik - 2 B ik

. (Y a.

i

) = Lj(§ aija )

ik

§% € y z* ay

,k
whence Tj + N, L - E a0
i

1-1
It follows that (h,7) — ((nj_l,nj,rj)) defines a
bijection from the set of all pairs (h,7) in 2.8 having the
property that h(c¢c) = h for some ¢ € 02(7) onto the set of all
u € U(x) having the properties that T #Z0 and h(c) = hu for
some ¢ € Cz(ru); the inverse of this map is u (hu,Tu).

Therefore, we have
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& =Tp _ - ¥ h) mult(c) @ :
X T uel(x) cECz(Tu) Ty
Tu¢0 h(e)=h
u
The desired formula now follows from 2.6. O

REMARK 2.9. We comment briefly on how 2.7 can be used to

compute the values of the projective indecomposablevcharacters

at a p’-element (for instance IG) of G. It is easy to write a
computer program which will determine the sets T(u) and U(x).
(For the special case G = SL(4,2m), see [3].) Aside from these
sets, one needs to know only the values of the irreducible
characters at the given p’-element, the composition factor

multiplicities [p ¢ ,:p ](m) (u,u’ € A, e A _) and a linear
ppt YA p p2

ordering of the elements of Ag which places x € AS after each
X+ T (u e U(x), T ? 0). The linear ordering is easy to

arrange: Let f:A - R be any homomorphism satisfying f(Ai) >0
and f(ai) >0 for each i (e.g. f =<-,p>), and let

f : A" 5 R be the homomorphism induced by Aij — f(Ai). Since
Ty € P\{0} (see the proof of 2.7), it follows that ?(Tu) > 0.
Therefore, given X,y € A?, it suffices to put y before x if

f(y) > f(x) (and to order them arbitrarily if f(y) = f(x)).

REMARK 2.10. The proof of 1.3 relies on the fact that, for

X € Ag, the G(m)—module M = M(9) o M(v-x)™ (* denotes
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contragredient) is projective and hence a direct sum of various

P(y) (y e Ag) with P(x) appearing exactly once. In general, M
is much larger than P(x) in the sense that M has many summands
P(y) with y # x. Consequently, to simplify computations, it is
reasonable to look for a naturally occurring and well understood
summand of M which is a direct sum of P(x) and a fewer number

of the other P(y)’s. For p > 2h,-2, it is shown in [5] that the

R

(m) of the injective hull Q(x) of M(x) in the

G(w)

restriction to G
category of "pm—restricted” -modules is such a summand. In
fact, Jantzen shows in [6, 2.10 Corollar 2] that the multiplicity
of P(y) as a summand of Q(x) 1is

®
i)

m
ng“ Loy, 0T (0,
P

(Jantzen remarks that we actually need only sum over those z for
which p - wt(z) € ¥ O'a;.) From 1.2 it now follows that if this

multiplicity is nonzero, then y-x € P’, where

Pr={0}U{Ya,.a.. +YD

K., EP = ?(m)IE b,. #0 for each j}.
ij ij ijij < 1]

(m)

Therefore, denoting by WX the Brauer character of the G "-module

Q(x), we get a formula for @X which resembles that in 1.3:
o =¥ - ¥ Y, lp

x<'yeAm zeA Y
y#X P

wZ:wXFrm(wz)](m)@y,

where x </ y if and only if y - x € P'. As anticipated, the
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index y in this formula ranges over a smaller set than that in
1.3, and so in this respect computations are simplified. On the
other hand, here we need to know the characters WX which are more
complicated, in general, than the irreducible characters required

for 1.3. (For some computations of dimKP(X), via the modules Q(x),

in the case G = SL(3,pm) (as well as SU(3,p2m)), see the thesis

[1] of Jantzen’s student, Dordowsky.)

3.  An Example: SL(4,2™)

If the characteristic p does not satisfy the assumption of
the previous section, in other words if p < <p,a6> + 1, it is
still possible that a result similar to 2.7 can be obtained by
modifying the methods. For instance, this is the case for the
group G = SL(4,2m) which we use here for an illustration.

The following lemma corresponds to 2.1.

LEMMA 3.1. Assume Y t..A.. =Y a..a.. + 3 b..k.. with t,. €
ij7ij 1j71]) j :

{-1,0,1} and a,.,b.. € z*.

i We have the following:

(i) % bij < 3 for each j, and if equality holds for some
i

j, then t..=Db.. =1 and a.,. =0 for each (i,j) € d.
1] 1] 1]

(ii) If b, i > 2 for some (10,30), then 85 + 2g; <1.

0-0 0

Proof. (i) Since « i = 2A.. — A, .. = =A.. + 2. —
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A3j’ ag; = 2A3j - A2j and Rij = 2Aij - Ai,j+1’ we obtain, for
each j, the equations
b1 = 2215 + Poyy m gy~ by 5 (3.2)
tzj = 2a2j + 2b2j — gy T agy - b2,j—1 and (3.3)
tgj = 2agy * 2bgy ~ gy ~ by 4y (3.4)

(We view all second subscripts in Z/mZ.) Adding these equations

gives

) jj T Apy tagg t 2y blj -2 bi,j—l (3.
i i i
for each j.
Fix j with ) bij maximal. From 3.5 we obtain
i
1
Z bij = E(Z tij + Z bi,j—l - A - a3j) (3.
i i i
<if3+3yb. )
-2 ol B R
i
so that Y bij < 3. Assume ) bij = 3. Then 3.6 implies that
i i
? tij = 3, % bi,j—l = 3 and aj; +ag; = 0, whence tij =1
each i and a,. = a_. = 0. By induction, b.. =3 and a,.
1j 3] J % 1] 1j
a3j = 0 for each j and tij =1 for each (i,j). Equations

3.2, 3.3 and 3.4 now imply that each bij is at least 1 and

5)

6)
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hence exactly 1. Finally, 3.2 implies that a2j = 0 for each j.

(ii) If bi . > 2 for some pair (i ), then (i)

00
implies that E bij < 2 for each j. Equation 3.5 then gives

090

a + a < 3-4+2 = 1. 0

1

13 o 1 Yo § 1.3

3j0

Let vol : A" 5 Z be the homomorphism induced by Aij — 1

and extend this map to ¥ by setting vol(x) = vol(x) for each

X € %.

LEMMA 3.7. Let x,x' € ¥. If x' < x, then vol(x') < vol(x).

Proof. The assumption X’ < X implies that x - x’ =

Ya,.a.. +y b..k,. with a,.,b,. € Z .
ijij 171 ij7oij

VOl(agj) =1 and VOl(aZj) =0 for each j, and Vol(&ij) =1

Now, vol(alj) =

for each (i,j). Therefore, vol(x) - vol(x’) = vol(x) - vol(x') =

vol(x - X') > 0. g

+ 2a, +

We will simplify notation by writing the number a 9

1

4a3 in place of the weight a1A1 + aZAZ + a3A3, and by writing

po in place of Fr(p). The next lemma gives all of the

composition factor multiplicities [p p ,:p ](m) (p,u’ € A_,
popt YA p

Ae A",

LEMMA 3.8. In the Grothendieck ring Q(m), we have the

following formulas.
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(1) PPy = wg + 2p2.
(2) P10y = Pg + Py
(3) p,p, = P, + 2pa + 2+ 3p
173 271 2 5°
(4) P10, = pp + 2.
o
(8) 0105 = 491 + %0
o
(6) P1Pg = Pq + Py + 20,
(7) = + 2007 +3 S
o
(8) PPy = Py + 2@5 + 2.
o o
(9) PoPg = P10y + Py * 20,0, + 3p6.
(10) Popy = Pg + P
o o
(11) Do = g + P+ Py + 2@2.
o
(12) PPy = PyPy + Py + 20,0, + 3P
o o o o
(13) PP = Pppy + 2@5 + 3p,0; + Bpyp, + 6o, + 6y + 8.
o o o o
(14) Pgpg = Py + 20, + 2¢5¢1 + 200, +.4p) + 4P, + 62, -
o
(15) Pg, = g + 0]+ 205,
o o o o
(16) DaPs = PPy + P1P; F 2¢4¢2 + 2¢4 + 3p1¢4 + 4¢3.
o o o o o
(17) PaPs = PePy + 20g + Bpop1 + Bpgp, + 6py + Tpg + 10.
o o o o o o
(18) pgpq = 9yPy + 203y + 2pP5 + 20gPy + 30gP1 + 4040y
+ 4¢1¢g + 6w4@g + 8w6 + 8@1.
o
(19) PyPy =Pyt 20,

(200 pp5 = 017y + 205



(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

P4%6
P4P7
P5%5
Y5

YrPq

Y6¥6

YePq

Pr¥q
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o o
¢2¢4 + 2p2 + 2 + 3w5.

o o o
@3w4 + 2@1@2 + 3¢4¢1 + 4¢6.

c o o o
= g + 2¢2p1 + 2¢2¢4 + 4@5 + 4@2 + 6.

o o o o
¢3p4 + p4@4 + 2@1¢2 + 2p1 + 3w4w1 + 4@6.

o o o o o o
¢2¢5 + 2@7 + 2@3 + 2¢6 + 3@5¢4 + 3@5@1 + 4@2¢2

+ 8@? + 8@2 + 10¢2.

(4 o o i o
= Pg t 2p7 + 2w5@4 + 2@2¢2 + 4p4 + 4@1 + 6@2.

22 (2 ag g g o
P1Pg + 20gP) 20405 + 2030y + 3PgPy + AP Py

o o
+ 4p4¢2 + 6p1p4 + 8@3 + 8@4.

2
(4 g (4 g (2 (2 (]
Pq + ZpqPy ¥ 2070y * 20505 + 209Pg + Bpgpg + A7y

2 2
+ 4¢Z + 4¢g + 8@5p; + 14¢2¢T + 14¢2pz + 16¢g

+ 20p, + 32@3 + 40,

In the preceding lemma, formulas (1), (2), (4), (8), (10),

(11) and (19) were computed first using weight space

decompositions (and duality) and then the remaining formulas were

obtained by using the associative law in Q

(m)_

For instance, the

. o o
equation Py + 0] + Py F 4¢2 = (¢4¢1)¢2 = ¢4(@1¢2) =

(22 -
Pgp, + P4 + 20, gives formula (15).

We return to the notation set up in 2.2 and further define

nﬂ? _ Z nb
i

kKX €A

ij7i

D’
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n

LEMMA 3.9. b? =0 if j & {kKkel}.

Proof. We proceed by induction on n. First assume that
n = 1 and suppress the superscript n in the notation. Since ak

. . k . .
= Lk(uk)Lk(Vk), 3.8 implies that bj =0 if j ¢ {k,k+1,k+2}

k k
so we need only show that bk+2 = 0. Assume bk+2 # 0 for some

k. Then 3.8 implies that B =1y = 7 and d := (ﬂi’ﬂ§+l’ﬂ§+2)

= (0,0,1), (0,0,2) or (0,0,4). Therefore, we have

k k k k
vl = vl + vy - By - 28, - 4B ,,) and
k k k k
h(¢™) = ? e LTI WER L
k
If d = (0,0,1), then v(¢) = —2A1k + 2A2k + 2A3k = 20, + 2a3k
and h(gk) = 26y, + Ky 4., But this contradicts 3.1(ii) since

?

v(gk) and h(gk) are summands of v(c) + h(c) = yz - 4 =

y+z-v€{} tiinjltij € {-1,0,1}} (see 1.2). We obtain a

similar contradiction if either d = (0,0,4), 1in which case

v(gk) = 2a1k + 2a2k and h(gk) = 2R3k + Kg y,q0 OF d = (0,0,2),
in which case v(gk) =a, +a and h(gk) = 2K, + K This
= Mkt %k 2k T ®2 k41
handles the case n=1.
If n>1, the induction hypothesis gives nak =
n-1, k., n-1, k-1 n-1_k n-1 k-1 . .
( bk)( bk ) = Lk( ﬂk) Lk( ﬁk )} (interpreting the

superscript k-1 as m-1 if k = 0) so the argument given above
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for the case n =1 applies here to complete the proof. 1

LEMMA 3.10. e.l.(yz,v) < 3.

Proof. It is enough to assume that the length of ¢ 1is at
least 3 and prove that X, =9 for some i < 3.

1.k 1.k
Suppose vol( bk+1) = 3 for some k. Then bi kel = 1 for

2

each 1, so that h(lgk) =y Kt (3.9). By 3.1(i) we have that
i

y =2z =% and aij =0 for each (i,j) € J where v(ec) =

, 1k
y aijaij (ef. proof of 3.9). In particular, a = Lk(7)Lk(7)

1,k

and V(lgk) =0 for each k, so that, by 3.8, b = (7) for

k+1

each k. Therefore, X, = il res(lbk) = 7.

Now suppose that vol(1b§+1) < 3 for each k. Then

1 k-1

v01(2ak) = VOl(le) + vol( bk ) < 5, whence vol(2bk) < 3 for

each k (3.8). Since ~« < §; for each n. (1.2), we have from

3.7 that 3m = vol(7) < vol(x,) = ¥ vol(zbk) <Y 3 =3m. Thus,

VOI(XZ) = 3m and v01(2bk) =3 for each k.

We now prove that V01(3ak) = V01(3bk) =3 for each k. If

v01(3ak) # 3 for some k, then, since ) Vol(3ak) = VOl(X2) =

3m we must have Vol(3ak) > 3 for some k in which case

v01(3bk) < v01(3ak) by 3.8. But in any event, V01(3bk) <
vol(3ak) for each k (3.8), whence 3m = vol(y) < Vol(x3) =

y v01(3bk) <y vol(3ak) = 3m. We conclude that vol(3ak =
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Vol(3bk) = 3 for each k.
Finally, the preceding paragraph and 3.8 show that each

3. k _ _
b™ = Lk(7), whence Xg = 1. 0

COROLLARY 3.11. vol(zbk) = vol(3ak) = V01(3bk) = 3 for each k.
Proof. This follows from the proof of 3.10. 0

LEMMA 3.12. Assume that the length of ¢ is 3.
(i) If X, =, then h(c) € H,-

(ii) If X, #~N, then y =12z =7 and mult(c) = o™

Moreover, C3(72,7) contains exactly two paths for which X, # 7.

2

Proof. We consider two cases.

(Case 1) vol(zak) =3 for some k. Fix sucha k. 3.8 and
k 3ak+1 2. k+1

. 2 . 2. k
3.11 imply that “b" = Lk(7). Since = ( bk+1)( bk+1) (by
2, k 2 k+l, 3 kel,
3.9) and bk+1 =1 € X, we have that vol( bk+1) =vol(Ta~ ") = 3
2, k+1 . .
{by 3.11), whence, b = Lk+1(7) (3.11 again). Continuing

this process, we obtain 2bk = Lk(7) for each k, so that

2.k .. .
Xg = H res("b") = 4. Combining our results with 3.9 we now have
that “b? =0 if j & {kk+l} or if n>1 and j #k

. 3 _ 1]
(c¢f. 2.3). Also, if h(c) =Y hijmij’ then hij = bi,j+1 S0

that h(c) € HO (ef. 2.5).

(Case 2) Vol(2ak) # 3 for each k. If v01(2ak) < 3 for
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some k, then 3.11 and 3.8 give the contradiction 3 = Vol(zbk) <
vol(zak) < 3. Therefore, vol(zak) > 4 for each k. Since
vol(lbk) < 4 for each k (3.8), we obtain 4m < ) vol(zak) =

Y vol(1p%) < 4m, so that vol(’b¥) = 4 for each k. 3.8 now

. . 1k 1k
implies that y = z = 4 and, for each k, ( ﬂk’ ﬂk+1) = (7,1),

n k nk

ﬂk, ﬂk+1)' We will establish the

(7,4) or (5,5). Set "d¥ = (

following statements.

(1) 1If 1dk = (7,1) for some k, then 1dk = (7,1) and
4% = (6,1) for each k.
(2) 1f Yd¥ = (7,4) for some k, then 1d° = (7,4) and
2dk = (3,4) for each k.
(3) td® % (5,5) for each k.
Assume that 1dk = (7,1) for some fixed k. If 1dk’ =
(5,5) for some k’, we may assume k'’ 1is chosen so that ldk’_1
= (7,1) or (7,4) (interpreting L7l 4 1dm_l). But then 3.8

[ "
implies that v01(2bk ) < 3, contrary to 3.11. Now, if 1dk =

(7,4) for some k”, we may assume that k” = k-1. Then 3.8 and

3.11 imply that 2d% = (3,4) and 2d5*! = (6,1). So 3%a! =

2. k+1,,2, k 3, k+1
( bk+1)( bk+1) = Li+1(6) Lk+1(4) and vol("b ) <3 (by 3.8)

contradicting 3.11. Thus 1dk = (7,1) for each k and from 3.8

and 3.11 we find that de = (6,1) for each k. This proves (1)

and a similar argument proves (2). Finally, if 1dk = (5,5) for

some k, then (1) and (2) imply that 1dk = (5,5) for each k.
But then 3.8 implies that v01(2bk) < 3 (for each k), contrary

to 3.11. This proves (3).



We have shown that, under the assumption Vol(zak) #Z3 for
each k, there are only two possibilities (given by the

conditions in (1) and (2), respectively) for the path ¢ and

?

that for either of these possibilities, X, 7, y =2z =4+ and

3
mlt(e) = [ [ malt(®eX) = 2™™™ = 2™ (3.8). 0
n=1 k
THEOREM 3.13. For each X € AE we have
— 1
& =Tp. -~ Y 7x(u) @ - o™ T
x T2 pel(x) Ty X0
T 20
u
(5XO = Kronecker delta).

Proof. Because of the modified lemmas 3.10 and 3.12 the

m+1

proof of 2.7 carries over here provided we subtract 2 6XOF f

the right hand side of 2.8. 4

The following tables give the degrees of the projective
indecomposable characters for G = SL(4,2m) in the cases m =

1,2,3; the degrees were computed from 3.13 with the aid of a

e A" (p=2) then, in the table

computer. If x = a..A..
P E 1) 1) p

corresponding to the choice of m, the integer 64 @X(l) can

found in the (sl,s2 1 9

(0 <'s, <10). We remark that the equation |G| = dim KG = },

xeA™
p

@X(l)py(l) (see [2], p. 146, Lemma 3.8) provides a check for ou

)-position, where ) aijpl_1+8J = 10s, + s

computations. We have verified that the degrees printed in the

tables satisfy this requirement.
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rom

be

T
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PN EWN=D

TABLE 1 (m=1)

0 1 2 3 4 5 6 7 ] 9

B ARBEHSRBRN PRROUERORR RRRRRRARRE RN BRBERE BRBRRBBRRE FRBBRRGRRN BRRRRORGOE RN RRNR R0 00000 HUNtinenne
»

. 1 3 5 3 3 5 3 1

TABLE 2 (m=2)

0 1 2 3 4 5 6§ -1 ] 9
® BRRRRRRRRG RRRRARIANE BHEEELERANS ARROROHNRE SRBURRRRBE HRRRORRRER BRRRARAREE HSRANGTRAN HRRERGBERN SRR BRRERS
-
hd 431 188 2086 132 188 198 132 36 188 61
. 1 u2 119 68 u8 12 286 14 13 i
. 14 12 iy 12 132 42 m 15 u8 24
» 16 4 188 19 14 ua 61 68 42 12
. 198 68 12 21 68 15 2 6 132 us
» 4y 16 u2 2 15 i 16 12 12 i
» 12 6 4 1
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1296

8408
4606
1728
1628
4904

2960
1680

TABLE 3 (m=3)

1] 1 2 4 6
% BORNBNINBRR RBGRRRANRR FARBRCRRER BRNRRBANNRE SRBRDRANRD RRRRBRAEEE NARRGERREE RUENRPORRNE RRRABAHERRE BRERSNNIR
-
. 20239 8408 11604 4904 8408 7180 4904
hd 4380 1628 4076 2444 1716 432 11604
L4 h3ou 25uY 1680 y32 4904 1580 1656
¢ 576 1l 8408 4076 14380 1716 2960
. 7180 2492 2584 864 2492 1278 864
» 1656 576 1580 864 564 144 1296
. 432 216 144 16 8408 2960 4304
g 1728 432 2960 969 Ty 524 1498
. 4380 2 1608 552 1668 858 576
* 546 186 516 288 192 48 4076
» 1498 848 516 a4 264y 832 864
. 2068 72 1716 576 576 192 567
. 432 10y uy 48 Ty 12 ua
L4 4606 1656 4380 2584 1656 432 4304
. 1668 864 576 144 4606 1608 1601
. 560 14y 1680 552 560 188 516
. uB3on 1668 1608 576 1442 864 546
» 864 288 858 432 288 72 1680
» 552 288 188 48 432 144 1hy
» 1T} 12 ugou 1628 1680 564 1716
. 1580 524 552 186 567 288 192
4 560 188 576 288 192 u8 564
- 192 96 64 16 1728 576 516
. 192 ug 864 288 288 96 288
» 576 192 192 64 192 96 &4
» Y] 16 u8 24 16 i 8408
» 2960 2492 1580 432 4076 1498 1668
* 567 1y 4380 1668 1608 576 1442
. 1716 567 576 192 576 2608 192
» 142 576 969 812 524 144 24ky
» 832 u28 288 72 1628 516 546
» 186 u8 u32 1uy T 48 144
» 7180 244y 2544 864 2044 1278 86h
- 858 288 aus u2s 288 12 2584
4 864 432 288 72 864 288 288
» 96 24 2492 aua 858 288 832
. 1278 428 432 14y 428 215 144
. 288 96 288 1l 96 2y 216
» 72 16 24 6 904 1716 1660
» 564 144 1728 576 576 192 576
» 1656 576 560 192 546 288 188
. 192 64 192 96 64 16 1580
. 524 288 186 ug 864 288 288
. 96 24 564 192 188 64 186
. 144 LT} 48 16 us 24 16
. 432 3l 432 216 1y 36 432
. 14y 72 48 12 4312 144 144
. 48 12 1y us ua 16 (1]
4 432 104 1y 48 Thly 12 ua
. 72 2h 72 36 24 6 iy
» 48 24 16 4 16 12 12
» 4 1

17~
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